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Executive  Summary

This deliverable provides an overview of Tasks 3.2 and 3.3 within our project. Our ability to 
effectively train deep networks and models relies heavily on a diverse dataset encompassing 
a wide range of 3D motions, spanning various motion types. Currently, there are several 
databases commonly used for training deep models, and we leverage them to enhance our 
research.lt encompasses two primary objectives:

1. Contextual Analysis of Human Motion: This involves a comprehensive examination of 
human motion, with a specific focus on the principles of Laban Movement Analysis.

2. Human Sentiment Analysis: This entails the capacity to assess, modify, or amplify 
emotions embedded within sequences of motion.

One of our primary data sources is the AMASS database, which acts as a central repository, 
consolidating data from diverse origins into a cohesive framework. This dataset revolves 
around the SMPL body model, enabling the conversion of motion capture data i nto realistic 
3D human meshes. Of particular significance is the DanceDB motion capture database, an 
offshoot of AMASS, tailored specifically for contemporary dance performances. It 
incorporates emotional nuances meticulously analyzed through Laban Movement Analysis 
(LMA). Additionally, we incorporate the AIST++ Dance Motion Dataset, derived from real 
dancers who synchronized their movements with music, further enriching our collection of 
3D dance data. Notably, our research benefits from the availability of a state-of-the-art 24- 
camera optical motion capture system, the PhaseSpace Impulse X2E. This advanced 
technology allows us to create a unique dataset comprising 30 distinct professional ballet 
performances, captured at the highest quality.

Task 3.2 focuses on the contextual analysis of human motion, with a specific emphasis on 
Laban Movement Analysis. The goal is to extract nuanced elements that effectively capture 
the complexity and dynamics of human movement, particularly in dance and theatre 
performances. To achieve this, we delve into deep learning architectures, including 3D 
Convolutional Neural Networks (3DCNNs) and autoencoders such as Variational 
Autoencoders (VAEs). These architectures are instrumental in providing a qualitative 
description of the subtleties in human motion.

Conversely, Task 3.3 centersaround human sentiment analysis, enabling the manipulation, 
modification, orexaggeration of emotions within motion sequences. Drawing inspiration from 
CLIP models, we develop multi-modal embedding spaces that facilitate the estimation of 
semantic similarity between motion and style. This enables us to stylize motions without 
direct reliance on training data. To enhance motion synthesis quality and diversity, we employ 
diffusion models, neural motion graphs, and Variational Autoencoders. Additionally, we 
introduce physics-guided constraints to ensure that our generated animations adhere to the 
laws of physics.

In summary, our comprehensive approach combines diverse datasets, cutting-edge deep 
learning architectures, and innovative techniques to advance our understanding and 
synthesis of human motion. This research has the potential to find applications in fields such 
as animation, motion analysis, and beyond.

research.lt
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Acronyms  and  abbreviations

Abbreviation Description

Al Artificial Intelligence

CLIP Contrastive Language-Image Pre-training

DB Database

LMA Laban Movement Analysis

MDM Motion Diffusion Model

RCM Russell Circumplex Model

VAE Variational Autoencoder

3DCNN 3D Convolutional Neural Network

IK Inverse Kinematics
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1. Introduction

This deliverable focuses on D3.2 - Human Body Pose & Sentiment Analysis, and 
encompasses two primary objectives:

1. Contextual Analysis of Human Motion: This involves a comprehensive examination of 
human motion, with a specific focus on the principles of Laban Movement Analysis.

2. Human Sentiment Analysis: This entails the capacity to assess, modify, or amplify 
emotions embedded within sequences of motion.

Achievingthese goals involves the extraction of intricate components that effectively capture 
the dynamic nature of human movement. Additionally, inspired by CLIP models, we aim to 
develop multi-modal embedding spaces that will enable the estimation of semantic similarity 
between motion and style, allows us to stylize motions without the need for direct reliance on 
extensive training data.

Section 2 discusses our primary motion capture database, AMASS, which consolidates data 
from 15 motion capture datasets, offering standardized skeletal and surface mesh 
representations. We also highlight our utilization of DanceDB within AMASS and the AIST++ 
database for dance-related research.

Moving to Section 3, we delve into Task 3.2, where our goal is to develop a neural network 
for in-depth human motion analysis, rooted in Laban Movement Analysis (LMA) principles. 
We explore advanced deep learning architectures, like 3D Convolutional Neural Networks 
(3DCNNS) and Variational Autoencoders (VAEs), to capture nuanced human motion features. 
We introduce the concept of deep motion signatures for motion sequence representation, 
emphasizing invariance to time scale and order.

In Section 4, Task 3.3 is detailed, aiming to enhance sentiment analysis in motion 
sequences. We plan to create a space connecting motion and style, enabling emotion-based 
stylization in dynamic performances. Our approach involves diffusion models and neural 
motion graphs for generating diverse animations, even with limited data. Physics-guided 
constraints ensure realism, especially in interactive scenarios.

Finally, Section 5 concludes this deliverable.
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2. Training  and  Testing  Databases

To effectively train our deep networks and models, we rely on a diverse dataset 
encompassing a wide array of 3D motions. In our research, we have leveraged a diverse set 
of motion capture databases to facilitate our investigations. Firstly, we have extensively 
utilized the AMASS database, accessible at https://amass.is.tue.mpg.de/. This database 
serves as a comprehensive resource, amalgamating data from 15 different optical marker­
based motion capture (mocap) datasets into a unified framework and parameterization. The 
essence of AMASS lies in its ability to transform mocap data into realistic 3D human meshes, 
meticulously represented through a rigged body model known as SMPL (Loper, Mahmood, 
Romero, Pons-Moll, & Black, 2015) This model, renowned and widely adopted within the 
research community, not only offers a standardized skeletal representation but also 
furnishes a fully rigged surface mesh. Importantly, AMASS is adaptable to arbitrary marker 
sets, enabling the recovery of soft-tissue dynamicsand lifelike hand movements. Please note 
that, in our research, we will use SMPL as the main motion format of research; however, we 
will also provide converters and parsersto movėto differentmotionformatsthatare currently 
the industry standards.

Additionally, AMASS houses our DanceDB motion capture database, meticulously 
transformed into the SMPL-X format. This invaluable resource showcases over 140 
contemporary dance performances, each infused with expressive emotions. Th is dataset has 
been pivotal in previous research endeavors, where we conducted thorough examinations of 
the intricate interplay between motion and emotions using the well-established Laban 
Movement Analysis (LMA) system.

In addition to AMASS, we have harnessed the AIST++ database, which can be accessed at 
https://paperswithcode.com/dataset/aist .The AIST++ Dance Motion Dataset consists of 3D 
dance data, meticulously reconstructed from real dancers who synchronized their 
movements with music. The dataset is derived from the AIST Dance Video DB, based on multi­
views acquisitions, and features a sophisticated pipeline that encompasses the estimation 
of camera parameters, 3D human keypoints, and 3D human dance motion sequences.

When it comesto data fortheatrical performances, we currently lack a dedicated, specialized 
database. However, there are valuable resources available, such as the AMASS database 
among others, that offer a broad and diverse collection of locomotion sequences. These 
sequences come equipped with labels indicating their corresponding actions. By utilizing 
databases like AMASS, we can access an extensive array of movements, which can be 
effectively employed for training purposes in the context of theatre performances. This 
diverse dataset not only facilitates the training process but also contributes to the realism 
and authenticity of the theatrical motions generated by our computational 
models.Furthermore, our research efforts have recently included the capture of professional 
ballet movements, facilitated through collaboration with the National Hungarian Opera (see 
Figure 1). Employing our state-of-the-art motion capture system, comprised of a 24 cameras 
Phasespace Impulse X2E motion capture system with active LEDs, we've compiled a 
database featuring30 distinct performances of specific ballet movements. This resource is 
intended to serve as a valuable training dataset for our deep learning networks, further 
enhancing the richness of our motion capture research endeavors.

https://amass.is.tue.mpg.de/
https://paperswithcode.com/dataset/aist
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Figure 1: Dance motion capture in our recently establish virtual production and motion capture studio at CYENS

Lastly, we have introduced a recent innovation called SparsePoser (Ponton, Yun, Aristidou, 
Andujar, & Pelechano, 2023), a cutting-edge deep learning-driven method designed to 
reconstruct full-body poses with the use of just sixtrackingdevices (see Figure 2). This system 
employs a convolutional autoencoder to generate precise human poses learned from motion 
capture data. Additionally, it incorporates a streamlined feed-forward neural network for 
inverse kinematics (IK), enabling precise adjustments of hands and feet in accordance with 
the data from the corresponding trackers. By employing this system, we can streamline the 
process of capturing a wider range of dance performances. It stands out for its cost­
effectiveness, reduced manual labor requirements, and the minimized need for intricate 
sensors on the performer's body.

Figure 2: Highly accurate poses reconstructed from six 6-DoF trackers using SparsePoser.
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3. Human  body  pose  and motion  analysis
This section pertains to Task 3.2, where our objective is to conceive and develop a neural 
network capable of qualitatively and contextually analyzing human motion. Our first target is 
to use the Laban Movement Analysis system to describe human movement nuances, using 
recent deep learning architectures. In addition, we are interested in developinga contextual 
analysis framework that will generate new motions of different durations, from examples, 
while maintaining invariance to timescale and temporal order. Our goal here is twofold: to 
create a system capable of generating motion sequences (e.g., dances or theater acts) of 
varying durations from a given input motion, while preserving the overall structure and 
content of the original motion. To achieve this, we plan to employ generative models, such 
as diffusion models, to acquire an understanding of the distribution of motion segments 
within a sequence. Subsequently, we will generate movements by selectively incorporating 
the essential and distinctive segments that best encapsulate and summarize the motion 
(whether it's dance or theater).

It's worth emphasizing that synthesizing long-term motion sequences using generative 
models like GANs or diffusion models is a formidable challenge. For instance, GANs often 
produce jittery motions and movements with temporal inconsistencies.

3.1. Emotion  Recognition  Technology  using  Artificial  Intelligence  (Al)

Human motion is inherently complex, and attempting to fully describe human actions using 
oversimplified motion descriptions is inadequate. Our systems must comprehend a wide 
spectrum of human actions, encompassing basic activities like walking, running, or jumping 
as well as stylistic variations influenced by factors such as the performer's emotions, 
expressions, gender, and age. Moreover, they need to consider not only the fundamental 
aspects of motion (such as posture) but also the nuanced qualitative and quantitative 
characteristics that make each motion unique.

The proposed style-coherent motion analysis algorithm is designed to extract the qualitative 
attributes of a performance, guided by the principles of Laban Movement Analysis (LMA). Its 
objective is to identify the factors that constitute the distinct movement signature of the 
performer. LMA serves as a structured language for interpreting, describing, visualizing, and 
notating human movement. It offers a comprehensive framework for documenting human 
motion and is categorized into four main components: BODY, EFFORT, SHAPE, and SPACE 
LMA strives to provide as simple a description as possible while capturing the necessary 
complexity of human movements. Here is an overview of each LMA component:

BO DY Component: This component primarily focuses on the body and its connections in 
space. It describes the structural and physical characteristics of the human body, detailing 
which body parts are in motion, how they are connected, which parts influence others, the 
sequence of movements between body parts, and general statements about body 
organization.

EFFORT Component: The EFFORT component delves into the intention and dynamic qualities 
of movement. It explores aspects like texture, emotional tone, and how energy is employed 
in each motion. It encompasses four subcategories, each with two polarities, known as 
EFFORT factors:

Space: This addresses the quality of active attention to the surroundings, with 
polarities of Direct (focused and specific) and Indirect (multi-focused and flexible 
attention).
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• Weight: It relates to the perception of physical mass and its interaction with gravity. 
It is associated with the impact of movement and comprises two dimensions: Strong 
(bold and forceful) and Light (delicate and sensitive).

• Time: Time reflects the inner attitude of the body towards the temporal aspect of 
movement, not just its duration. Time polarities include Sudden (urgent, staccato, 
unexpected) and Sustained (stretching time, legato, leisurely).

• Flow: Flow concerns the continuity of movement, feelings associated with it, and 
progression. Flow dimensions encompass Bound (controlled, careful, and restrained 
movement) and Free (released, flowing, and fluid movement).

EFFORT changes often correlate with shifts in mood or emotion and are crucial forexpressive 
movement.

SHAPE Component SHAPE analyzes how the body changes its form during movement It 
describes static shapes the body assumes, how the body changes in relation to itself and to 
points in space, and how the torso adapts to support movements in other parts of the body.

SPACE Component: SPACE describes movement in relation to the environment, pathways, 
and spatial tensions. Laban categorized movementorientation principles based on the body's 
kinesphere (the space within reach of the body, forming the mover's personal movement 
sphere) and the body's dynamosphere (the space where the body's actions occur, an 
essential aspect of personal style).

In this work, in contrast to previous works that use human designed features (Aristidou, 
Stavrakis, Charalambous, Chrysanthou, & Loizidou-Himona, 2015), (Aristidou, 
Charalambous, & Chrysanthou, Emotion analysis and classification: Understanding the 
performers’ emotions using LMA entities, 2015) we will employ recent deep learning 
architectures to extract these LMA qualities, and better understand human movements.

3.2. Deep Learning  Architectures

I n our research, we will delve into the exploration of cutting-edge deep architectures designed 
to provide a qualitative analysis of human motion. Our approach involves training these 
networks on labeled data, where each label corresponds to specific elements derived from 
the LMA framework. The aim is to achieve a nuanced and precise description of human 
movement, capturing its intricacies and subtleties. The two key architectures we intend to 
investigate are:

1. 3D Convolutional Neural Networks (3DCNNs): We are actively exploringthe utilization 
of 3DCNNS due to their ability to capture spatial features in three-dimensional space. 
These networks have demonstrated their suitability for a wide range of tasks, 
including action recognition, pose estimation, and motion analysis. Leveraging their 
capacity to analyze motion across all three dimensions, we anticipate that 3DCNNs 
will enable us to extract rich and contextually relevant information from motion data.

2. Autoencoders, Including Variational Autoenooders (VAEs): Another avenue of 
investigation involves various autoencoder variants, with a particular focus on 
Variational Autoencoders (VAEs). These autoencoders aim to extract salient features 
from 3D motion data by learning compact representations. Past research has 
demonstrated that these compressed representations can serve as valuable 
resources for subsequent analysis or reconstruction tasks. By exploring the 
capabilities of autoencoders, we intendto uncoverthe latentfeatures that contribute 
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to the essence of human motion, thus facilitating a deeper understanding and 
improved description of motion patterns.

Through the utilization of these advanced deep architectures, we seekto enhance our ability 
to qualitatively analyze and characterize human motion comprehensively. This research has 
the potential to significantly contribute to fields such as motion analysis, animation, and 
human-computer interaction by providing more accurate and insightful representations of 
human movement.

3.3. Contextual  Analysis  and Synthesis

In Task 3.2, our primary objective is to design and develop a neural network capable of 
contextually analyzing human motion, preserving its global structure and content while 
allowing for the generation of shorter or longer movements based on an input motion. This 
idea draws inspiration from the works of Shocheret al. (Shocher, Bagón, Isola, & Irani, 2019), 
Shaham et al. (Shaham, Dekel, & Michaeli, 2019), Kulikov et al. (Kulikov, Yadin, Kleiner, & 
Michaeli, 2023) in image processing, and has been previously investigated by U etal.'s (U, 
Aberman, Zhang, Hanocka, & Sorkine-Homung, 2022) GANimator and Tevet et al.'s (Tevet, 
et al., 2023) MDM in character animation.

Motion capture technology has proven to be a valuable tool for capturing dynamic 
movements, but the raw data lacks labels, annotations, or parameterization for further 
editing, synthesis, or control. A concise description of the performed movement is often 
necessary, both for indexingand retrieval purposes and forsummarization. This is crucial for 
generating shorter clips with the same semantic content as the original animation or for 
extending a movement to meet specific duration requirements. Traditional motion analysis 
representations typically focus on skeletal geometry or pose matching, butthese approaches 
often fail to capture the temporal evolution and stylistic nuances of motion.

To address these limitations, we recently introduced the concept of deep motion signatures 
(Aristidou, Cohen-Or, Hodgins, Chrysanthou, & Shamir, 2018), a succinct representation of 
motion sequences, and demonstrated in our recent work on dance synthesis (Aristidou, et 
al., 2023). This approach divides motion into a finite set of motion-motifs and defines 
signatures based on the distribution of these motifs (bag-of-motifs) within the sequence. 
Importantly, this method is time-scale and temporal order invariant, making it capable of 
handling variations in motion duration and speed, as well as actions occurring at random 
intervals.

Our goal is to design a network that generates shorter or longer motion sequences while 
preserving the distribution of motion-motifs from the input motion. This will enable us to 
create motion clips with the same semantic content as the original, a crucial task for various 
applications. We have already train fully convolutional GANs, similarly to the ideas of InGAN 
(Shocher, Bagón, Isola, & Irani, 2019) and SinGAN (Shaham, Dekel, & Michaeli, 2019), to 
learn the distribution of motion-motifs at different scales, allowing us to generate diverse 
motion samples while maintaining the overall structure and uniqueness of the training 
performance. We feed a generatorwith a motion sequence, utilizing convoi útion layers from 
the GANimator project to scale the animation to different durations. Adiscriminator assesses 
the distribution of motion patches in the input and generated motion. A decoder (inverted 
generator) then converges the scaled motion back to its initial size. Our loss function 
compares the original and synthesized motions to ensure high-quality results.

Currently, we are mostly interested in utilizing the idea of SinDDM (Kulikov, Yadin, Kleiner, & 
Michaeli, 2023) (see Figure 3) that uses diffusion models that have been proved to perform 
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better in motion synthesis rather than the GANs, e.g., the work of Tevet et al. (Tevet, et al., 
2023). Additionally, we aim toensure that the synthesized motion remains synchronized with 
the music beat, similarly to the works of Aristidou et al. (Aristidou, et al., 2023) and Zhou et 
al. (Zhou, et al., 2023).

In detail, our work aims at encompassing the design of a network to learn the distribution of 
motion segments within a sequence. It will generate movements by selecting and combining 
important and unique segments that best describe the motion. Furthermore, the network will 
be capable of extendingthe motion duration by adding common movements while preserving 
the semantic content of the input motion. We will conduct comparative analyses with existing 
methods such as the GANimator (U, Aberman, Zhang, Hanocka, &Sorkine-Hornung, 2022) 
or MDM (Tevet, et al., 2023) networks and other methods on the pre deep-learning era e.g, 
seam carving (Avidan & Shamir, 2007).

Random samples from a single exampleTraining image

Figure 3: Single Image Denoising Diffusion Model



4. Human  sentiment  analysis
In Task 3.3, our overarching objective is to pave the way for advanced human sentiment 
analysis. Our aim is to enable the transfer, modification, or exaggeration of emotions within 
a given motion sequence, ultimately enhancing performance creation. Drawing inspiration 
from recent advancements in Contrastive Language-Image Pre-training (CLIP) models (see 
Figure 4), we aspire to cultivate a multi-modal embedding space bridging motion and style. 
This space will facilitate the estimation of semantic similarity between motions and 
emotions/styles, empowering us to stylize motions without direct reference to training data. 
This innovative approach decouples training data from input motions, eliminating the need 
for manual processing and motion registration. Furthermore, we intend to establish a 
bidirectional mapping between motion and emotions, employing the well-established Russell 
Circumplex Model (RCM) emotion coordinates (Aristidou, etai., 2017). This novel approach 
will enable the stylization of highly dynamic movements, such as those found in dance 
theatre, at interactive rates.

It is important to emphasize that our approach is inherently multimodal, involving a syner^ 
of various sensory modalities. This collaborative effort will be closely coordinated with our 
esteemed partners, including ARC, specializing in audio and text modalities, and UJM, which 
specializes in emotion recognition from facial cues. Further insights into these collaborative 
endeavors will be elaborated upon in greater detail in the forthcoming deliverable, D4.1.

CLIP K

�otion
-image

Reconstructed �otion

Figure 4: The CLIP space and model

To achieve these goals, we are exploring the potential of diffusion models and neural motion 
graphs. Diffusion models have proven effective in capturing motion segments within 
sequences. We will leverage these models to generate movements by extracting essential 
segments that best represent the input motion, whether it be dance or theatre. Additionally, 
inspired by CLIP models, our approach seeks to develop a multi-modal embeddingspace that 
measures semantic similarity between motions and specific tasks. This enables motion 
stylization for previously unseen movements without requiring reference to the training data, 
streamlining the process, and enhancing flexibility.

Our development includes a model that employs diffusion models to generate diverse 
motions while retaining the core motifs from a single learned input sequence. Given the 
limited data availability, we are workingtowards trainingthe model on a single motion, similar 
to SinDDM (Kulikov, Yadin, Kleiner, & Michaeli, 2023). Our denoising network will be 
designed to cover only a portion of the input sequence's receptive field, allowing it to learn 
from multiple local temporal motion segments simultaneously. This approach will enable 
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temporal composition, style transfer for unseen styles, and the synthesis of variable-length 
motions.

Our animation synthesis approach will merge the strengths of diffusion models and neural 
motion graphs to address challenges related to generating high-quality, controllable, and 
diverse animations, particularly complex motions. We aim to employ denoising diffusion 
models to generate animations, even with limited annotated data, bycreatingsequencesof 
prompted intervals and transitions. These sequences are then blended using neural motton 
graphs (Khan, Ribeiro, Kumar, & Francis, 2020), offering real-time and scalable motion 
synthesis capabilities. Each motion type will be represented as a separate neural node, thus 
reducing computational costs when incorporating new motion types. We will then introduce 
a single transition network to model transitions between motion nodes, and also to include 
a lightweight control module for fine-grained controllability. See for example Figure 5.

�a  person walks forward, turns, 
then sits, then stands and walks back �

�the person is walking 
out a medium speed. �

“ a person who is walking moves 
forward taking six confident strides.

Figure 5: Executing text Commands via Motion Diffusion in Latent Space (Chen, et al., 2023)

Furthermore, we will enhance animation quality and diversity through latent space 
manipulation, by leveraging a Variational Autoencoder method similar to (Chen, et al., 2023). 
This method extracts informative latent codes that capture the essence of human motion 
sequences. By incorporating the diffusion process directly within the motion latent space, we 
expect to generate dynamic motion sequences that are aligned with conditional inputs, 
ensuring both realism and practical applicability.

Moreover, we will introduce physics-guided constraints by adopting a motion diffusion model 
that enforces physical constraints, like (Yuan, Song, Iqbal, Vahdat, & Kautz, 2023). A physics­
based motion projection module is expected to project denoised motion into physically 
plausible motion, enhancing the naturalness and fluidity of animations, especially in 
scenarios involving interactions with objects.

It's important to notethat our proposed modelswill be primarily trained on dance and theatre 
specific data.
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5. Conclusions
In conclusion, this deliverable provides a comprehensive overview of our approach in D3.2 - 
Human Body Pose & Sentiment Analysis. We have discussed our primary data sources, with 
a significant emphasis on the AMASS database, which plays a central role in our research. 
Our work encompasses the development of neural networks for qualitative human motion 
analysis, rooted in Laban Movement Analysis principles, as detailed in Task 3.2. Additionally, 
Task 3.3 focuses on enhancing sentiment analysis in motion sequences, incorporating 
innovative techniques like CLIP models, diffusion models, and neural motion graphs. 
Throughout our research, we aim to push the boundaries of motion analysis and synthesis, 
particularly in the context of dance and theatre data. Section 5 marks the conclusion of ths 
deliverable, settingthe stage for our ongoing efforts in advancing human motion research.
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